
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014 57

Content-Priority-Aware Chunk Scheduling Over
Swarm-Based P2P Live Streaming System:
From Theoretical Analysis to Practical Design

Chun-Yuan Chang, Member, IEEE, Cheng-Fu Chou, and Kwang-Cheng Chen, Fellow, IEEE

Abstract—In this work, we revisit two chunk, which is the
smallest video data unit for scheduling and transmission, sched-
uling policies that are essentially mutually exclusive but beneficial
for swarm-based P2P live streaming systems. The first is con-
tent-diversified oriented (cd-oriented) policy, which regards each
chunk of equal importance and schedules chunks to be sent in a
near-random fashion. With this approach, peers hold different
parts of stream content and contribute their available bandwidth
to the system. The second is importance-first oriented (if-oriented)
policy, which gives each chunk a content-dependent priority,
usually in a rate-distortion (RD) sense, and first schedules the
highest-priority chunk to be sent. In doing so, important chunks
are more likely to be successfully received before their playback;
the reconstructed video quality is thus enhanced under poor net-
work conditions. We successfully identify a simple methodology,
which operates on the data availability domain, to leverage both
policies. (Data availability here means the set of data units that the
user can get from its source(s)). This allows us to deploy dynamic
strategy switch scheduling in practical systems to further improve
the received video quality of each peer. Simulation results show
that our data-availability driven dynamic strategy switch not only
overcomes the drawbacks of the two individual policies but also
retains the benefits of both. Most importantly, it bridges the gap
between rate-distortion analysis on compressed video and P2P
content delivery research.

Index Terms—Chunk scheduling, P2P streaming, rate-distortion
optimized.

I. INTRODUCTION

R ECENT years have witnessed the success of swarm-
based P2P live streaming systems, including Cool-

Streaming [1], [15], GridMedia [2], PPTV [3], PPStream [4],
UUSee [5], and others. In these systems, peers not only serve as
stream content receivers but also play the role of stream content
forwarders to assist the streaming server in broadcasting live

Manuscript received September 01, 2013; revised December 16, 2013; ac-
cepted December 29, 2013. Date of publication January 20, 2014; date of cur-
rent version March 07, 2014. This work was supported by the National Sci-
ence Council of China under Contract NSC 101-2221-E-002-059-MY2, Con-
tract 102-2221-E-002-096-MY3, and Contract 102-2622-E-002-013-CC2. This
paper was recommended by Guest Editor C. W. Chen.
C.-Y. Chang and C.-F. Chou are with Graduate Institute of Networking

and Multimedia, National Taiwan University, Taipei 10617, Taiwan (e-mail:
left@cmlab.csie.ntu.edu.tw; ccf@cmlab.csie.ntu.edu.tw).
K.-C. Chen is with Graduate Institute of Communication Engineering, Na-

tional Taiwan University, Taipei 10617, Taiwan.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JETCAS.2014.2298278

stream content to a large number of peers on the Internet.
Compared with the conventional client-server paradigm, this
emerging content diffusion paradigm allows content providers
to save on more infrastructure cost and to instead serve more
peers. It is worth noting that in these systems there is no
rendezvous peer to tell each peer what to do. Instead, each
peer arbitrarily builds neighbor relationships with other peers,
and exchanges its available content with its neighbor peers in
an epidemic fashion. Since each peer may maintain several
neighbor peers, when some of the peer’s neighbors leave or
are congested (that is, busy serving other peers), the peer can
immediately shift its request to other neighbors to prevent
sudden interruptions in stream content delivery. Hence, these
systems are highly robust to peer churn and are able to maintain
excellent load-balancing among peers.
Nevertheless, these systems are still in their early stages, and

much research, from different points of view, has been con-
ducted to improve system performance. For example, [11] and
[12] aim at an adaptive neighbor selection approach such that
peers with more available bandwidth can crawl as close to the
streaming server to speed up chunk diffusion. Works [12] and
[13] add incentives to encourage peers to contribute more to the
system; this increases the system’smaximal sustained streaming
rate. To reduce the impact of peer churn, [14] takes into ac-
count peer stability during neighbor selection. To effectively
utilize each peer’s available bandwidth, [15]–[22], [43] focus
on a chunk scheduling mechanism to determine which chunk to
diffuse first. Works [40]–[42] take into account the advantages
of a content delivery network (CDN) to further address critical
issues in swarm-based P2P streaming systems, such as a high
buffering requirement, frequent disruption of playback, unfair-
ness in upload contributions, and network-unfriendliness. Our
work is orthogonal to these excellent works in that we further
take into account the characteristics of compressed video to ex-
plore a content-priority-aware chunk scheduling mechanism to
improve received video quality for poor network conditions or
insufficient aggregate available bandwidth.
In the past, many systems have adopted such techniques

to improve video quality. Since these systems were built in a
client-server manner (i.e., an always-on server holds complete
stream content from which clients obtain their stream content),
there is no data availability problem in these systems Simply
using an if-oriented scheduling policy [23]–[26] significantly
improves the received video quality of each peer. The main

2156-3357 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



58 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

idea of the scheduling policy is to assign each chunk a con-
tent-dependent priority (usually in an RD sense) and schedule
to be sent first that chunk with the highest priority. In doing so,
important chunks are more likely to be successfully delivered
(or received) before their playback, thus enhancing the recon-
structed video quality.
However, in a swarm-based P2P streaming system, chunks

are diffused by the exchange of available peer chunks. Under
this kind of content diffusion framework, peers’ buffered stream
content must be made sufficiently diverse. Otherwise, due to
insufficient data availability, peers are unable to efficiently uti-
lize available bandwidth [16]. To address this, many cd-oriented
chunk scheduling mechanisms have been proposed (for instance
in [15]–[22]), in which chunks are regarded as equally impor-
tant and are scheduled to be sent in a near random fashion. Con-
sequently, peers can hold different parts of the stream content,
maintaining data availability, and thus are enabled to contribute
their available bandwidth to the system.
Clearly, it is not feasible to apply an if-oriented chunk sched-

uling mechanism directly into a swarm-based P2P streaming
system, because doing so tends to make similar the buffered
content for different peers. This effect would not be beneficial
for peers’ available bandwidth utilization, and could be exac-
erbated significantly for large populations or when considering
finer rate-distortion (RD) characteristics. This only complicates
the design of a content-aware chunk scheduling mechanism (in
an RD sense). In this work, we seek to leverage cd-oriented and
if-oriented chunk scheduling policies to further improve the re-
ceived video quality of each peer.
In the real world, swarm-based P2P streaming systems are

quite complex due to the many design considerations (neighbor
selection policy, chunk scheduling mechanism load balancing)
and dynamics (peer churn, heterogeneous peer capability, and
video streaming rate) that affect performance. To isolate effects
caused only by chunk scheduling, we begin with an abstract
stochastic model [18], [43] that assumes neighbor selection
is random and that all peers have the same capability. Since
the model takes into account only buffer positions and does
not consider the inherent content importance, we modify it to
render it suitable for the analysis of the if-oriented scheduling
policy. A comparison of the cd-oriented chunk scheduling
policy with the if-oriented chunk scheduling policy reveals
several properties of the if-oriented chunk scheduling policy
that are unique to swarm-based P2P streaming systems. This
suggests a simple way, from the data availability domain, to
effectively leverage the two policies with differing population
sizes. In short, we achieve the objection by simply maintaining
the data availability of each peer above a certain amount.
This finding led to the design of a dynamic strategy switch
chunk scheduling mechanism for systems in practice to further
improve the received video quality of each peer.
To best of our knowledge, this is the first series of work that

makes use of the data availability of each peer to leverage both
the cd-oriented and if-oriented chunk scheduling policies. Sim-
ulation results show that the proposed data-availability driven
dynamic strategy switch not only provides better video quality

compared with existing approaches, but also is scalable even
to large population sizes. Most importantly, it bridges the gap
between rate-distortion analysis on compressed video and P2P
content delivery research.

A. Contributions

Our contributions are the following.
• We build a general analytical model to analyze the
performance of the cd-oriented and -oriented chunk
scheduling mechanisms, and identify several properties of
the if-oriented chunk scheduling policy that are unique to
swarm-based P2P streaming systems.

• We successfully identify a simple methodology, which
operates on the data-availability domain, to leverage the
cd-oriented and -oriented chunk scheduling mecha-
nisms. This allows us to deploy dynamic strategy switch
scheduling (DSW) in practical systems. Most importantly,
it bridges the gap between rate-distortion analysis on
compressed video and P2P content delivery research.

• We conduct a performance evaluation of DSW in a prac-
tical simulation environment and theoretically explain why
our dataavailability driven DSW is better than other ap-
proaches.

• We illustrate the limitations of content-priority-aware
chunk scheduling in swarm-based P2P streaming systems.

B. Organization

The remainder of this paper is organized as follows. In
Section II we further enhance our extended model in [29] so
that we can analyze and identify the properties of the if-ori-
ented scheduling policy that are unique to swarm-based P2P
streaming systems when finer priorities are assigned to each
chunk, and share some useful insights. After that, in Section III
we successfully devise a chunk scheduling design method-
ology, which resolves our initial concern in [28], based on
the extended abstract stochastic model with advantages from
both cd-oriented and if-oriented chunk scheduling policies,
and then describe implementation issues in Section IV. The
simulation environment and settings are described in Section V.
In Section VI, we evaluate the performance of DSW in com-
parison with other approaches. We conclude in Section VII.

II. INSIGHTS FROM ABSTRACT STOCHASTIC MODEL

In this section, we outline the abstract stochastic model de-
veloped in [18], [43] and modify it to reveal the difference be-
tween the cd-oriented and if-oriented chunk scheduling mech-
anisms. This yields several useful insights, based on which we
explore the co-existence of the two mechanisms, and derive a
unique evaluation metric, data availability, that can be used ef-
fectively to control the tradeoff between content diversity and
content importance under different system parameters (for ex-
ample, startup latency, population size, and fineness of rate-dis-
tortion characteristics). This unique measurable metric enables
us to develop a dynamic strategy switch in practical systems.



CHANG et al.: CONTENT-PRIORITY-AWARE CHUNK SCHEDULING OVER SWARM-BASED P2P LIVE STREAMING SYSTEM 59

Fig. 1. Abstract P2P streaming model in [18].

A. Abstract Stochastic Model in [18] and [43]

As shown in Fig. 1, a server and peers are in this model.
The server generates a stream of chunks and
then disseminates them, in playback order, into the system. In
this model, the server is assumed to generate chunks per time
slot. Consequently, only peers can obtain the newly generated
chunks from the server. Each peer is equipped with a streaming
buffer that can accommodate up to chunks received from
other peers (including the server). The buffer positions are in-
dexed by . is used to store the newest
chunk that the server distributes in the current time slot;
is reserved for playback. In this model, the buffer acts as a

sliding window: in each time slot, each peer fetches the chunk
stored in for playback and then shifts the buffer con-
tents by one position toward the playback deadline for the next
playback. If is empty, a peer experiences a chunk loss
in the time slot. Since the model is for a live streaming system,
all peers are to playback the same chunk at the same time.
Apart from obtaining it from the server, a peer could also

obtain any chunk from other peers up until the playback time
of that chunk. In this model, a peer is assumed to be able to
download at most one chunk per time slot. That is, if a peer has
been selected by the server, it no longer contacts other peers for
download. As such, each peer first checks if it has been selected
by the server; if not, the peer may contact other peers to retrieve
a chunk not in its buffer. In the real world, a peer may connect to
multiple peers. For simplicity, however, in this model, a peer is
limited to contacting a single peer at each time slot. If the con-
tacted peer has more than one chunk that the peer desires, the
peer selects one of them, according to a chunk scheduling mech-
anism , for download. If the contacted peer cannot provide any
desired content to the peer, the peer loses the chance to down-
load anything in this time slot, and a content bottleneck occurs.
Since each peer may randomly contact other peers, a peer may
be contacted by multiple other peers in a given time slot. How-
ever, when is large, the likelihood of such an event occurring
is quite low [18], [43]; hence it is reasonable to ignore the im-
pact of such an event by assuming that each peer is able to serve
all requests. In addition to the above settings and assumptions,
[18], [43] assumes that buffer occupancy probabilities across all
peers are i.i.d., We thus have the following simple relation be-
tween the steadystate buffer occupancy probabilities for chunk
scheduling mechanism as follows:

(1)

In above equation, since the buffer position is filled by
a shift from , the buffer occupancy probability at the begin-
ning of the time slot is the probability that the probability

was filled at the beginning of the time slot plus the proba-
bility that was filled by the P2P streaming protocol during
the time slot ; this is expressed as . The
terms and represent the probability that
peer does not have but its selected peer does, and the
probability that peer chooses to download from its se-
lected peer , given that does not possess while does,
respectively. Subscript represents the associated buffer po-
sitions that is competing with. Unless otherwise stated,
covers all of the buffer positions that are before , ex-
cluding .
In [18], Zhou et al. evaluated the system performance of dif-

ferent scheduling policies by specifying . However, they
do not consider the inherent content importance. We refer these
policies as content-independent chunk scheduling mechanisms
(random or rarest-first scheduling mechanisms, etc.). Next, we
modify the above model and further extend to build
a stochastic probability model like (1) to evaluate the perfor-
mance of an if-oriented chunk scheduling policy.

B. Extended Abstract Stochastic Model

By definition, a peer using if-oriented scheduling first sched-
ules the most important chunk to be sent or downloaded. Hence
we must first assign an importance to each chunk. This, how-
ever, is not trivial, as it must reflect not only the RD impact of
each chunk but also its distribution over time, which depends on
the video content characteristics (high or low motion videos),
encoding setting (dependency configuration, rate control mech-
anism), as well as the packetization approach. Since the purpose
of this extended model is to reveal the difference between the
cd-oriented and if-oriented chunk scheduling policies, it is suffi-
cient to simply assign a relative priority to each chunk. Without
loss of generality, we assume there are kinds of chunks, with
priorities , and assume that the in-
jection of each kind of chunk into the system in each time slot
is in a round-robin fashion. Consequently, we can construct a
stochastic model for specifying buffer occupancy probability of
if-oriented scheduling as follows. Note that there are two impli-
cations with if-oriented scheduling.
1) The diffusion of the highest-priority chunks is not affected
by lower-priority chunks.

2) Lower-priority chunks may be diffused only when the se-
lected peer cannot provide for the retrieval of any higher-
priority chunk.

The first implication indicates that the derivation of the
highest-priority buffer occupancy probabilities does not take
into account other buffer occupancy probabilities; the second
indicates that the derivation of lower-priority buffer occupancy
probabilities must take into account the higher-priority buffer
occupancy probabilities. These two implications suggest that
we should specify the buffer occupancy probabilities of each
individually and in a recursive fashion. Note that since the

injection of each kind of chunk into the system in each time slot



60 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

is assumed to be in a round-robin fashion, when , the
selected peer could provide more than one chunk with the same
priority. Hence, we must still employ a content-independent
chunk scheduling mechanism to break ties when the selected
peer has more than one chunk with same priority.
Let us denote the resultant buffer occupancy probabilities of

each that are associated with as . We thus derive
with different as follows.

Initial

(2.1)

In contrast to in (1), here is here set to , where
is the buffer position that currently should be filled with

the priority chunk. This indicates that the highest-priority
chunk competes only with chunks with the same priority.
Recursion

(2.2)

where is the probability that the selected peer cannot
provide any desired chunk with a priority higher than . In
greater detail

(2.3)

where is the probability that peer has
plus the probability that peer does not have the chunk

for , nor does the selected peer .
After obtaining each , we have the buffer occupancy

probability of an if-oriented scheduling policy that takes into
account and

(3)

Remark 1: When is independent of .
This is because when becomes 1.
Remark 2: When becomes .
This is because when , all chunks are regarded as

equally important. So becomes 1 and is re-
duced to .
Below, we take 1 (the rarest-first scheduling), and its cor-

responding as example to show the difference between
the cd-oriented and if-oriented chunk scheduling policies.

C. Numerical Result Analysis

In this subsection, we seek to compare and if(rf) in the
context of a pure P2P environment (that is, ) based on

1The selection here is because it has been recognized as one of the most
powerful chunk scheduling policies for bandwidth utilization in swarm-based
P2P streaming systems. A derivation of and can be
found in the Appendix.

Fig. 2. Delivery ratios for and with ,
and .

the extended stochastic model, and investigate parameters like
, and on the performance of the chunk scheduling policy,

for instance buffer occupancy probabilities. Since the simplest
case for an if-oriented chunk scheduling policy is , below
we start with the analysis of case . For , we have
Result 1: , where (see Fig. 2).
This result reveals the inherent property of the if-oriented

chunk scheduling policy. To further understand this policy, we
investigate the variation of and for in Fig. 2. It is
interesting that increases rapidly before po-
sition and then decreases significantly. In practice, after
each chunk is produced by the server and pushed to a peer,
chunk attempts to traverse all peers in the system. Over time,
a diffusion tree forms for chunk is formed. Clearly, for a chunk
with a higher diffusion priority than other chunks, its diffusion
tree grows larger than that of other chunks. So is essen-
tially larger than . Note that unlike client-server models,
chunks must be relayed by participating peers in a swarm-based
P2P streaming system. Over time, the size difference between
the diffusion trees formed by the chunk with priorities and
grows significantly. Hence, initially

increases rapidly. However, as shown, after , this differ-
ence shrinks, because the peer population is not unlimited: the
growing of the diffusion tree is bounded by the peer population
. Therefore, the diffusion speed of priority- chunks lowers.

In contrast, after the system is full of priority- chunks, pri-
ority- chunks gradually catch up with the occupancy of the
higher-priority chunks.
Result 2: 2 (see Fig. 2).
We observe that the performance of if(rf) is worse than that

of . This is because in swarm-based P2P streaming, content
broadcasting relies mainly on the exchange of available chunks
among peers. That is, at any time, each peer must experience
sufficient content diversity, or else the peers will be unable to
use their bandwidth efficiently. Clearly the if-oriented chunk
scheduling policy violates this principle. Below, we explain this
unique side effect in more detail.

2Because we assume a steady state model, buffer position and buffer size
are equivalent.



CHANG et al.: CONTENT-PRIORITY-AWARE CHUNK SCHEDULING OVER SWARM-BASED P2P LIVE STREAMING SYSTEM 61

Fig. 3. Delivery ratios for and with , but
with different .

In the if-oriented chunk scheduling policy, peers first obtain
high-priority chunks; then when a peer has the whole set of
high-priority chunks, it begins requesting and diffusing low-pri-
ority chunks. Given a small buffer size, all peers are engaging
in requesting or disseminating high-priority chunks and have
no spare time to exchange low-priority chunks yet. In such a
case, there must be only a small percentage of peers that own
the low-priority chunks. Since there are only a small set of
peers with low-priority chunks, most peers cannot see those
low-priority chunks; thus most peers cannot request those low-
priority chunks. In other words, a serious content bottleneck
for low-priority chunks occurs. Hence, compared with , we
cannot leverage the available bandwidth of each peer under the
if-oriented chunk scheduling policy. The performance of if(rf)
is thus worse than that of .
Scalability is one of the major concerns of a P2P system.

Below, we study the impact of on the performance of
and if(rf).
Result 3: Let . increases

with before and converge (see
Fig. 3).
This is due to the gains from multiplexing. That is, for the

chunk scheduling policy, each peer dedicates its resources to dif-
fusing all chunks as quickly as possible, while under the if(rf)
chunk scheduling policy each peer allocates its resources first
to high-priority chunks; that is, it is only when the selected peer
cannot provide any higher-priority chunks for retrieval that if(rf)
uses the remaining bandwidth to exchange low-priority chunks.
Hence, for large populations there are only a small percentage
of peers that possess low-priority chunks, similar to the scenario
discussed in Result 2. Thus, in this case, even peers with suffi-
cient upload bandwidth experience serious content bottleneck
for low-priority chunks. This could lead to poor utilization of
upload bandwidth.
However, this performance gap does not always increase with

the population size. Instead, when the population size exceeds a
value , the gap shrinks. This is because excessively large pop-
ulations lengthen the desired buffering delay for a chunk to tra-
verse the whole system. If each peer’s buffering time, that is,
buffer size , cannot tolerate this desired delay, most peers will

Fig. 4. The delivery ratio of with , but with different
and .

be unable to get the chunk before the playback deadline. That
is, no matter which scheduling policy we choose, the delivery
ratio degrades with larger populations because of the playback
deadline and the required processing time (including queueing)
at each node.
Note that in real-world systems, chunk importance is quite

dynamic; that is, each chunk could have a different importance
in an RD sense. Hence it is worth investigating cases of larger
are worthy of being.
Result 4: The larger is, the worse is (see

Fig. 4).
From Fig. 4, we see that when finer RD characteristics are

taken into account, the performance of if(rf) degrades signifi-
cantly. Below, we build on Remark 2 and Result 2 to provide a
justification for this observation.
We first consider the case of and for if(rf). As

indicated in Remark 2, when is set to 1,
. We thus have .

Suppose holds, where
and .

We check if as follows.
We take the lowest-priority chunk cluster and branch it
out into two equal-sized clusters and . This yields
the new chunk partition .
Suppose , and apply
if(rf) on this new partition. We obtain the average delivery ratio
of the new partition and denote it as follows:

(4)

By Result 3, we infer that the equality

could hold, and derive the following equality:

(5)



62 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

Similarly, we continue to branch out until , and derive
the following equality chain:

(6)

By mathematical induction, we infer that
.

D. Summary and Insights

From the above discussion, we understand the properties
of the if-oriented scheduling mechanism that are unique to
a swarm-based P2P streaming system; that is, , and
significantly influence its performance. We learn that if we want
to reap the benefit of the if-oriented scheduling mechanism, we
must solve the content bottleneck problem. The result of Fig. 2
suggests that increasing the buffer size (startup latency) could
be one way to do this. However, in practice, the system de-
signer keeps startup latencies as short as possible so that peers
will be willing to enter the system (in general, peers are not
tolerant of long startup latencies). Thus, increasing the buffer
size is not a good choice. Recall that for small populations (as
shown in Figs. 3 and 4), if(rf) performs well: it not only yields
a high delivery ratio of high-priority chunks but also yields
comparable bandwidth utilization to . This is because with a
small population, high-priority chunks are disseminated to the
whole system relatively quickly, so low-priority chunks need
not wait long to be diffused. This ensures system-wide content
diversity and a more muted content bottleneck effect. This leads
to two useful insights: 1) sufficient content diversity allows us
to directly apply the if-oriented scheduling mechanism and 2)
we ought to strike a good balance between content diversity
and content importance.

III. DESIGN METHODOLOGY

In this section, based on the simple model outlined above,
we propose a chunk scheduling design methodology that shares
advantages from both and if(rf) chunk scheduling policies
and that is able to adapt to different system parameters such as
and .

A. Buffer Space Concatenation Approach

One of the simplest ways to achieve the above objective is to
combine the two policies in a concatenative fashion. That is, 1)
first, we divide the entire buffer space into two parts, a prefix
part and postfix part, at a cutoff buffer position ; the prefix
part and the postfix part cover to and to

, respectively; and 2) then, we perform and if(rf)
on the prefix and postfix parts, respectively.
To determine the feasibility of this approach, we perform a

brute-force search on to determine whether there exists a

Fig. 5. Blue line stands for buffer size used for part. Red line stands for the
corresponding average data availability part can supply.

such that the delivery ratio of this concatenated approach, de-
noted as , is comparable to that of . We say that
there exists a chunk scheduling method that shares advantages
from both and if(rf) chunk scheduling policies if there exists
such a less than the buffer size.
For this, we find the smallest

for various population sizes
and chunk importance granularities , and plot the results in
Fig. 5. We can see that 1) is always less than the buffer size;
2) the larger or is, the larger is.
The first finding confirms the existence of such a scheduling

policy; the second shows that large values of or call for
increased content availability, which can be achieved by in-
creasing , to support the necessary content diversity. Actually,
this indicates the inherent limitation of content-priority-aware
chunk scheduling in swarm-based P2P streaming systems be-
cause weight of becomes small. We will discuss this limita-
tion in real simulation results in VI.
Note that the above buffer space concatenation approach

leads to a way to leverage and if(rf), but it is performed
only when peers are aware of and . However, in practice,
a peer’s joining or leaving the system and its video charac-
teristics are hard to predict. Hence, such an ideal approach is
hard to realize in real-world systems. Below, based on the ideal
approach, we explore a simpler way to adapt to these system
dynamics.

B. Data-Availability Driven Approach

From above analysis, we see that the adjustment of the cov-
erage of enables it to provide sufficient data availability for
later if(rf). Hence, it is instructive to further investigate what
data availability the part supports. For this, we transform the
part to its corresponding average data availability as

(7)

and plot the transformed results in Fig. 5 for comparison.We see
that regardless of the population size and chunk importance
granularity are, the average content availability that part
can supply is bounded by the range [1.88, 2.5], which is quite



CHANG et al.: CONTENT-PRIORITY-AWARE CHUNK SCHEDULING OVER SWARM-BASED P2P LIVE STREAMING SYSTEM 63

Fig. 6. Status of the request window and playback deadline in each peer.
Numbers in each request packet means the required chunks’ IDs of the peer.

a narrow range compared with that of , the range for which
is [20], [35]. This indicates that there exists a unique evaluation
metric that can be used to adapt simultaneously to and ,
simultaneously. This implies that if we can measure the data
availability that each peer can sense and limit it to a specific
range, we can effectively leverage the and if(rf) scheduling
policies. With this in mind, we propose a new content-priority-
aware scheduling policy that can easily be implemented in real
systems.

IV. IMPLEMENTATION ISSUES

A. Buffer Space Concatenation Versus Dynamic Strategy
Switch

Actually, to do this we need only modify slightly the buffer
space concatenation approach; that is, we carefully adjust the
size of such that the data availability that each peer can sense
can be maintained within a certain range. However, such adap-
tation is inflexible: it could make it difficult to respond quickly
to content bottlenecks, because when a peer detects insufficient
data availability, all it can do is to change the size of its part
and wait passively for a rare chunk from a neighbor for it to ex-
change with its neighbors during the next scheduling time. The
shortcoming of this approach is that if its neighbors cannot sup-
port useful data availability, it is useless for that peer to adjust
to improve its own data availability. To avoid this dilemma,

our idea is to view each peer’s neighbors as sensors that monitor
the status of data availability, and to leverage the two policies
according to the availability detected by the neighbors at dif-
ferent times. This approach is detailed below.
In general, in practice (as shown in Fig. 6), each peer pe-

riodically encapsulates the information on its required chunks
into several request packets, in which each packet could con-
tain one or more desired chunk IDs, and then delivers them to
its different neighbors for the chance to be served. Our design
will, by default, cause each request packet from its neighboring
peers to be served in an if(rf) fashion. That is, when a peer re-
ceives a request packet, it first fetches the highest-priority chunk
to transmit (in an RD sense) (as shown in Fig. 7). In our de-
sign, peers that serve as neighbors may reject this service style.
That is, once a peer serving as a neighbor detects the poten-
tial shortage in data availability in the near future, that is, the
number of available exchanging chunks is less than a threshold,
it may immediately perform to serve all request packets to
increase the content diversity of its neighbors and to prevent
content bottlenecks. Thus, among the request packets delivered
by a peer at scheduling time, some are request packets served in
an fashion and some served in an if(rf) fashion. We use such
a dynamic strategy switch to leverage the two policies.

Fig. 7. Peer ’s sending queue.

B. Threshold Setting

The threshold value is the key to the proposed dynamic
strategy switch. Fortunately, based on our abstract stochastic
models, we have a proper range of data availability, approxi-
mately 2. When implementing our approach in practice, we use
the following modifications.
Here, we consider the average download rate that each peer

can measure as its capability in the abstract stochastic model.
With the above information as well as our abstract stochastic
models, we are able to set the value of the threshold in real sys-
tems. Suppose the average download rate that a peer measures
is and that each peer performs chunk scheduling every sec.
Then the threshold is set to chunks.

C. Selection

Although the above discussion and theoretical analysis are
based on , there are many possible options that can be
used to design the proposed dynamic strategy switch. Since the
debate is still open as to which cd-oriented scheduling policy is
better, we do not discuss this issue. For a fair comparison with
existing content-priority-aware scheduling (such as the work in
[30]), we use to implement our dynamic strategy
switch in the following evaluations.

V. SIMULATION ENVIRONMENT AND SETTINGS

The simulation environment used in this work is a modifica-
tion of P2Pstrmsim3 [2], [17], which has been widely used by
other groups for P2P streaming-related research.

A. Environment Description

Members: The system is composed of peers, the tracker
server, and the streaming server. Peers, which not only receive
streaming content but also store and forward streaming con-
tent to other participants, are participants in a P2P streaming
system. The tracker maintains a list of peers which participate
in a specific channel or in the distribution of a streaming file,
and also answers queries from peers for neighbor lists. The
streaming server packetizes pre-encoded video streams into a
sequence of 1040-byte chunks (including 40 byte headers) and
disperses them into the system in a live fashion. The server’s
upload bandwidth is 2 Mb/s. To simulate the bandwidth het-
erogeneity of the peers, we used three different typical DSL
nodes with upload capacities of 1 Mb/s, 384 kb/s, and 128 kb/s,
and download capacities of 3 Mb/s, 1.5 Mb/s, and 768 kb/s,
respectively. The fractions of different types of peers was set
to 0.15, 0.39, and 0.46, respectively, and average upload and

3http://media.cs.tsinghua.edu.cn/~zhangm/



64 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

download capacities were set to 358.64 kb/s and 1.388 Mb/s,
respectively.
Entry Phase: When a peer enters the system, it contacts the

tracker and requests a neighbor list. For simplicity, we assume
that the tracker gives the complete list of online peers to the
peer. After obtaining the neighbor list, the peer randomly se-
lects several peers (this could include the streaming server) as
its neighbors and establishes neighbor relationships with them.
After that, the peer periodically receives and sends buffermap
packets from and to its neighbors. The buffermap packet is used
to indicate which of the peer’s chunks are cached and available
in its streaming buffer. Then, the peer performs a chunk sched-
uling mechanism to retrieve chunks of interest from its neigh-
bors, and waits for the first arrival chunk from the neighbors
to initialize the start-up procedure. After a start-up delay, say

s, the peer commences playback, after which it is able
to continue without interruption until the end of the simulation
time. Any chunk that is received after the playback deadline is
regarded as useless (or lost) and could result in serious error
propagation. The playback speed of each peer is fps
and is semi-synchronized to the playback speed of the source
peer.
Scheduling Protocol: In this simulation environment, each

peer assumes the role of both video content receiver and
supplier.
As a receiver, the peer periodically, say s, checks

its request window and determines which chunks should be re-
quested. As shown in Fig. 6, there are four types of chunks in the
request window: 1) (blue) chunks which have been stored in the
streaming buffer, 2) (gray) chunks which have been requested
but not yet received, 3) (green) chunks which are desired in the
request window but not yet available in the neighbors, and 4)
(red) chunks which are desired in the request window and avail-
able in the neighbors, but have not yet been requested. Only red
chunks are considered in the scheduling process. Here we de-
note by the set of the chunks: this is the data availability that
a peer measures.
After the peer is aware of , these chunks are encapsulated

into several request packets according to a chunk scheduling
policy. When a requested chunk does not arrive after the request
has been sent out for a period of time, say s, and is still
in the request window, it will be included into the again for
next time request. Any absent chunk that falls out of the request
window will not be requested further.
As a supplier, the peer periodically, say s, checks

its sending queue and determines which request packet chunk
should be served first. As shown in Fig. 7, each peer collects
request packets issued from its neighbors, and stores them in a
sending queue. Each time, each peer randomly picks up a re-
quest packet and then chooses a chunk to serve according to the
scheduling policy. Since each peer’s upload bandwidth is dif-
ferent, the maximal number of chunks that each peer can serve
within seconds is different. In the simulation environment, we
assign a time-to-live (TTL) to each request packet. If the sup-
plier cannot serve all chunks included in a request packet within
the TTL, it simply removes this request packet from the sending

queue and will not serve this request packet; this is to guarantee
that each served chunk is able to arrive at the destination peer
before the playback deadline.
Overlay: In the simulation environment, any pair of online

peers may establish a bidirectional neighbor relationship. To
control the overhead due to buffermap or request packets, we
restrict the maximal number of neighbor relationships that each
peer can maintain to a fixed number, say . On the other
hand, we also enable each peer to replace its neighbors when
some of its neighbors’ contributions are too low. For this, each
peer periodically replaces its lowest-contributing neighbor
with some probability . In addition, we assume the
end-to-end bottleneck is at the access links and not in the core
network, in accordance with existing commercial swarm-based
P2P systems [1]–[5] and academic research [9]–[22]. The
round-trip-time (RTT) between every pair of peers and ,
denoted as , is taken into account and set as in [8], [17].

B. Video Trace and Metrics

We concatenated different types of CIF video sequences, in-
cluding high-motion (e.g., Foreman and Football) and low-mo-
tion (e.g., Akiyo and News) video sequences, to generate ap-
proximately 1000 s of test video sequences. The concatenated
video sequence was encoded using the H.264 encoder (JM16.0
[7]) with fps. To achieve consistent video quality, we
disabled the JM16.0 rate control and fixed the quantization pa-
rameters (QP) for I, P, B frames in encoding. The resulting vari-
able-bitrate video had an average total bitrate of 328 kb/s, and
its quality was 34.69 dB on average.
In our experiments, each chunk in the video stream was pack-

etized in equal sizes and only frames with the same frame type
were combined for packetization. Here, we used the one-order
rate-distortion hint track (RDHT) mechanism [24]–[26] to as-
sign a finer importance to each video chunk; this can be com-
puted as where is
chunk ID; and are the average PSNRs
of the reconstructed video sequences with and without chunk .
The importance of chunk increases with .
Two metrics are used to evaluate performance: the delivery

ratio the ratio of the number of chunks that actually arrive be-
fore the playback deadline to the number of chunks that should
arrive before playback deadline; and PSNR (dB) the rendered
video quality compared with the raw video sequence. We used
FFmpeg [6] for decoding. When a frame gets lost, FFmpeg uses
its default error concealment tool to minimize the error propa-
gation effect.

VI. EXPERIMENT RESULTS

Here, we use the simulation environment in Section V to
validate the robustness of DSW to different system parameters
such as start up latency and population size, and demonstrate
the adaptability of DWS to fluctuating video streaming rates as
compared with the following approaches.
• RAND: Peers always serve the chunks in each request
packet in a random fashion.

• IF: Peers always serve the chunk with highest RDHT.



CHANG et al.: CONTENT-PRIORITY-AWARE CHUNK SCHEDULING OVER SWARM-BASED P2P LIVE STREAMING SYSTEM 65

Fig. 8. (a) Delivery ratios for different startup latencies. (b) PSNR for different
startup latencies.

• PR (the prioritized random scheduling in [30]): With this
approach, is partitioned into a regular set and a probing
set. The chunks in the regular set, which are regarded as
equal-important, are more important and are served with
higher priority; the chunks in the probing set are less im-
portant and are served only when the suppliers have sur-
plus upload bandwidth allocated to those chunks. Note
that although chunks in the regular set are served in a
RAND fashion, chunks in the probing set are served in an
IF fashion. The size of the regular set is determined by

, where BW4 is the aggregate avail-
able bandwidth, is the video streaming rate, and
is the amount of data availability.

To ensure that all peers playback the same part of the given
video sequence, all peers are forced to join the session initially
and do not quit after they join the session. Unless otherwise
stated, all settings follow those in Section V.

A. On Impact of Startup Latency

Startup latency is an important system parameter for swarm-
based P2P streaming systems. In general, greater startup laten-
cies lead to less chunk loss before the playback deadline. To
investigate the impact of different startup latencies, we take

as an example and show in Fig. 8 several delivery
ratios and PSNR plots.
First, we can see that IF yields a poor delivery ratio for small

startup latencies; this is consistent with Result 2 in Section II.
We see that the PR delivery ratio outperforms that of IF, because
in comparison with IF, PR has a larger regular set, which sup-
ports greater content diversity for swarming. Thus, compared
with IF, PR suffers from less content bottleneck and better uti-
lizes each peer’s available bandwidth. In addition, PR yields
a delivery ratio comparable even to RAND. This because PR

4The estimation of aggregated available bandwidth in a P2P system is not
trivial: it depends not only on network core congestion but also on the data
availability of each peer [32]. Here, for simplicity, we assume that the aggre-
gated available bandwidth is the sum of the average upload bandwidth that its
neighbors can supply, that is, where is the upload band-
width of neighbor and is the number of neighbors of neighbor .

Fig. 9. (a) Delivery ratio for different peer counts. (b) PSNR for different peer
counts.

maintains a regular set for swarming, which is similar to the
case with in Section II. As indicated in the numerical
results, the case of is not sensitive to content bottleneck.
In addition, the coverage of PR’s regular set is larger than that
of for : the PR delivery ratio is thus similar to that for
RAND. As shown, DSW also yields a delivery ratio comparable
to RAND. This validates the feasibility of our data-availability
driven approach.
In Fig. 8(b), we further investigate the corresponding PSNR

of Fig. 8(a). We see that although the IF delivery ratio is worse
than that of PR, its PSNR gain is much better than that of PR.
This is because 1) small population sizes lead to less content bot-
tleneck, shrinking the delivery ratio gap between IF and PR; 2)
IF essentially protects chunks with higher RDHT. This implies
that the delivery ratio gap is mostly due to the loss of low-pri-
ority chunks. Thus, on the whole, the PSNR gain of IF is higher
than that of PR.
Last, we can see that our DSW consistently outperforms other

approaches by several dBs. This is because the proposed DSW,
when choosing when to switch between IF and RAND, is driven
by the data availability measured by each peer. In general, the
greater the startup latency, the more measurable the data avail-
ability. This implies that DSW adapts well to different startup
latency settings to strike a good balance between content diver-
sity and content importance, that is, the greater the startup la-
tency, the more frequently IF can be performed. In contrast, IF
can be performed infrequently.
Therefore, compared with IF and PR (no adaptability to

startup latency) our data availability driven DSW yields perfor-
mance gains in terms of either delivery ratio or PSNR.

B. On Impact of Population Size

We further investigate the delivery ratio and PSNR for var-
ious population sizes (from to ) for the
different scheduling strategies in Fig. 9.
We see that when population sizes are small, both the delivery

ratio and PSNR of all approaches are better. Clearly, the PSNR
of IF and DSW are the best, almost the same in fact; the second
best is PR and the worst is RAND. This is because for very small



66 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

Fig. 10. PSNR over time.

population sizes (say ), the performance of each peer is
easily influenced by the server’s capability. Since the server’s
upload bandwidth is set to 2 Mb/s in our simulation, which is
several times the video streaming rate, both data availability
and available bandwidth are sufficient. Under such conditions,
all approaches work well. However, when population size is in-
creased to , the server’s impact disappears. As shown,
there is a rapid drop in both delivery ratio and PSNR. We can
see that for populations larger than , the IF delivery
ratio rapidly falls, due to content bottleneck. We also observe
that the IF PSNR becomes worse even than that of PR.
It is interesting that although PR shows poor PSNRs for small

scales, increased populations (from to ),
yield increased PSNRs. This is a server-side effect and can
be explained as follows. In general, in pure swarm-based P2P
streaming systems, the server’s duty is to diffuse at least a copy
of video streaming to its neighboring peers (of course, the more
powerful the server, the more copies it can send out). To better
utilize each peer’s available bandwidth, the server still follows
the content diversity principle to disperse video content to each
neighboring peer, after which the peers reciprocate among
themselves with their received video content. Hence, under
such conditions, if strict IF is not performed (in comparison
with PR of course), it is difficult for each peer to concentrate
on receiving high-RDHT chunks. Hence the PSNR of PR is not
guaranteed. However, as the population increases, the server
effect disappears and the PR PSNR rises.
When the population is increased to , we observe

that although the delivery ratios of PR and DSW remain high
and the DSW PSNR still outperforms that of PR, their PSNRs
decline. We explain this as follows.
Recall the buffer concatenation approach and the discussion

on the smallest in Fig. 5. We know that the larger M is, the
larger is. This indicates that large population sizes make it
difficult to guarantee the rate-distortion performance for any
content-priority-aware chunk scheduling approach because
weight of becomes small. Therefore, when population keeps
increasing, the PSNR of DSW and PR converge theoretically.
Nevertheless, they still can provide better rate-distortion per-
formance than RAND can do in mostly situations.

C. On Impact of Streaming Rate Fluctuation

In Fig. 10, we plot the average PSNR and video streaming
rate over time to demonstrate the adaptability of different
scheduling mechanisms to fluctuating video streaming rates for
the case of 4500 peers. Each plot in the figure is the average
PSNR of 600 frames. Clearly, our approach outperforms other
approaches consistently, whether video traffic overwhelms the
average peer’s upload bandwidth or not.
We see that the PSNR of IF is still quite poor even for band-

width-sufficient regimes (320–380 s and 580–650 s). This is be-
cause IF is inherently vulnerable to a serious content bottleneck
effect for large populations. Thus, in such situations, if peers still
apply IF, they waste system-wide available bandwidth. On the
other hand, we can see that when bandwidth supply is insuffi-
cient (467–575 s and 200–300 s), RAND performs poorly. This
is because RAND offers no protection for high RDHT chunks.
Hence a well-designed chunk scheduling mechanism should si-
multaneously take into account both content diversity (among
peers) and content importance. As shown, PR yields consis-
tent PSNR improvement for RAND and IF, and thus could be
a way to simultaneously achieve these two objectives. How-
ever, compared with the proposed DSW, it does not work well
when the video streaming rate exceeds the average peer’s up-
load bandwidth.
This is because when video streaming rate is large, the server

generates more chunks than usual, and thus injects more diverse
chunks into the system than usual. As we have discussed, this
case is very disadvantageous to PR because it is difficult for
peers to concentrate the received chunks in regular set. Thus,
the PSNR of PR is poor.
However, DSW, by default, performs IF, and switches to

RAND only in the case of serious content bottleneck (that is,
data availability less than a threshold). Therefore, when video
streaming rate is large, DSW adaptively performs IF more
frequently. Thus, compared with PR, DSW strikes a better
balance between content diversity and content importance,
yielding greater PSNR gains.



CHANG et al.: CONTENT-PRIORITY-AWARE CHUNK SCHEDULING OVER SWARM-BASED P2P LIVE STREAMING SYSTEM 67

Fig. 11. PSNR for different peer counts and chunk loss rate.

D. On Impact of Chunk Loss

The above experimental results are based on the assumptions
that the end-to-end bottleneck is at the access links and not
in the core network, and that peer churn is ignored. In truth,
though, both exercise substantial influence over the received
video quality of each peer. In these experiments, we simulated
these effects by adding random chunk loss to each peer’s up-
link to demonstrate the resilience of DSW. Fig. 11 shows the
PSNR performance for various chunk loss rates under
and . The trend is consistent with the results in
Fig. 9(b); that is, IF yields greater PSNR gains in small scale, but
PR works better in large-scale conditions. As shown in Fig. 11,
DSW works well even with different chunk loss rates and pop-
ulation sizes.

VII. RELATED WORKS

Although there have been several studies that take into
account rate-distortion characteristics for swarm-based P2P
streaming, they focus mostly on layered P2P streaming. We
briefly survey the relevant literature here. In [31], [37], [44]
each chunk is assigned an empirical score as a function of the
chunk’s rarity, emergency, and importance (in an RD sense).
Then the peers diffuse higher-priority chunks to achieve a better
rate-distortion benefit. Such an approach can be categorized as

. As shown in previous work [29], however, this approach
does not scale. In [38], a heuristic buffer space concatenation
approach is proposed where the request window is partitioned
into three disjoint regions for different functionalities. Each re-
gion plays different roles for better video quality. Although this
work seems good at small scales, many settings are empirical
and heuristic. The work in [30], [39], which is the extended
version of [31], introduces the concept of prioritized random
regions to solve the scalability problem in [31]. Although the
idea is simple and solves the scalability problem, it is still a
heuristic and cannot guarantee rate-distortion performance even
when finer rate-distortion characteristics are considered. To
solve the problem, we introduce the concept of data availability
and show theoretically that there exists a sweet data availability
that can be used effectively to control the tradeoff between
content diversity and content importance. Simulation results

show that the proposed DSW outperforms PR significantly by
several dBs.

VIII. CONCLUSION

In this work, we modify the abstract model in [18] to ana-
lyze and compare the cd-oriented and if-oriented chunk sched-
uling policies. Based on the simplified model, we successfully
devise a way, from the data availability domain, to leverage the
two scheduling policies. The proposed data-availability driven
DSW not only retains the advantages of the two scheduling poli-
cies but also adapts to different system parameters. Simulation
results show that DSW outperforms other approaches and sig-
nificantly enhances the received video quality of each peer. In
particular, the proposed scheduling method is quite simple: it re-
quires only the integration of a simple data-availability detector
into each peer. We believe that it is applicable to existing com-
mercial systems.

APPENDIX

: By intention, a peer using first pulls the chunk
which has the fewest number of copies in the system. From (1),
we know that is an increasing function of . Hence, con-
ceptually selects chunks with priority

. Hence, in is set to the buffer positions be-
fore , which is denoted as , and thus is modeled as
the probability that the selected peer cannot provide any desired
chunk before

(A1)

Substituting (A1) into (1) yields the following difference
equation for :

(A2)

: From the above we know that in is
reduced to . Thus, the corresponding
can be given by

(A3)

After obtaining each , we compute using (3).



68 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

REFERENCES

[1] CoolStreaming [Online]. Available: http://www.coolstreaming.us/
[2] GridMedia [Online]. Available: http://www.cctv.com/html/Grid-

media_index.html
[3] PPTV [Online]. Available: http://www.pptv.com/
[4] PPStream [Online]. Available: http://www.ppstream.com
[5] UUSee [Online]. Available: http://www.uusee.com
[6] FFmpeg [Online]. Available: http://ffmpeg.org/
[7] JM16.0 [Online]. Available: http://iphome.hhi.de/suehring/tml/
[8] Meridian [Online]. Available: http://www.cs.cornell.edu/People/egs/

meridian/data.php
[9] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang, “Chal-

lenges, design and analysis of a large-scale P2P Vod systems,” in ACM
SIGCOMM, Seattle, WA, Aug. 2008, pp. 375–388.

[10] X. Hei, Y. Liu, and K. W. Ross, “Inferring network-wide quality in
P2P live streaming systems,” IEEE J. Sel. Areas Commun., vol. 25, no.
10, pp. 1640–1654, Oct. 2007.

[11] D. Ren, Y. H. Li, and S. G. Chan, “On reducing mesh delay for peer-to-
peer live streaming,” in IEEE INFOCOM, Phoenix, AZ, Apr. 2008, pp.
1732–1740.

[12] M. Piatek, A. Krishnamurthy, A. Venkataramani, R. Yang, D.
Zhang, and A. Jaffe, “Contracts: Practical contribution incentives
for P2P live streaming,” in USENIX NSDI, San Jose, CA, Apr.
2010, pp. 81–94.

[13] A. Habib and J. Chuang, “Incentive mechanism for peer-to-peer media
streaming,” in Proc. 12th IEEE Int. Workshop IEEE Qual. Service,
Montreal, Canada, Jun. 2004, pp. 171–180.

[14] F. Wang, J. Liu, and Y. Xiong, “Stable peers: Existence, impor-
tance, and application in peer-to-peer live video streaming,” in Proc.
IEEE 27th Conf. Comput. Commun., Phoenix, AZ, Apr. 2008, pp.
2038–2046.

[15] X. Zhang, J. C. Liu, B. Li, and P. Yum, “CoolStreaming/DONet: A
data-driven overlay network for efficient media streaming,” in Proc.
IEEE 27th Conf. Comput. Commun., Miami, FL, Mar. 2005, vol. 3, pp.
2102–2111.

[16] N. Magharei and R. Rejaie, “PRIME: Peer-to-peer receiver-driven
mesh-based streaming,” in Proc. IEEE 27th Conf. Comput. Commun.,
Anchorage, AK, May 2007, pp. 1415–1423.

[17] M. Zhang, Q. Zhang, and S. Q. Yang, “Understanding the power of
pull-based streaming protocol: Can we do better?,” IEEE J. Sel. Areas
Commun., vol. 25, no. 9, pp. 1678–1694, Sep. 2007.

[18] Y. Zhou, D. M. Chiu, and J. C. Lui, “A simple model for analyzing
P2P streaming protocols,” in Proc. IEEE Int. Conf. Netw. Protocols,
Beijing, China, Oct. 2007, pp. 226–235.

[19] S. Shakkottai, R. Srikant, and L. Ying, “The asymptotic behavior
of minimum buffer size requirements in large P2P streaming net-
works,” IEEE J. Sel. Areas Commun., vol. 29, no. 5, pp. 928–937,
May 2011.

[20] T. Bonald, L. Massoulie, F. Mathieu, D. Perino, and A. Twigg, “Epi-
demic live streaming: Optimal performance trade-offs,” in Proc. ACM
SIGMETRICS, Annapolis, MD, Jun. 2008, pp. 325–336.

[21] C. Liang, Y. Guo, and Y. Liu, “Is random scheduling sufficient in P2P
video streaming?,” in 28th Int. Conf. Distrib. Comput. Syst., Beijing,
China, Jun. 2008, pp. 53–60.

[22] B. Q. Zhao, J. C. Lui, and D. M. Chiu, “Exploring the optimal chunk
selection policy for data-driven P2P streaming systems,” in Proc. IEEE
9th Int. Conf. Peer-to-Peer Comput., Tarragona, Spain, Sep. 2009, pp.
271–280.

[23] J. Chakareski, J. Apostolopoulos, S. Wee, W. Tan, and B. Girod,
“Rate-distortion hint tracks for adaptive video streaming,” IEEE
Trans. Circuits Syst. Video Technol., vol. 15, no. 10, pp. 1257–1269,
Oct. 2005.

[24] P. A. Chou and Z. Miao, “Rate-distortion optimized streaming of pack-
etizedmedia,” IEEE Trans.Multimedia, vol. 8, no. 2, pp. 390–404, Apr.
2006.

[25] Z.Miao and A. Ortega, “Expected run-time distortion based scheduling
for delivery of scalable media,” in Proc. Int. Packet Video Workshop,
Pittsburgh, PA, 2002, pp. 687–693.

[26] J. Chakareski and J. Apostolopoulos, “Rate-distortion optimized dis-
tributed schediling of multiple video streams over shared communica-
tion resources,” IEEE Trans. Multimedia, vol. 8, no. 2, pp. 207–218,
Apr. 2006.

[27] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[28] C. Y. Chang, C. F. Chou, T. C. Chiu, Y. M. Chen, and Y. C. Chou,
“Conducting rate-distortion optimization in data-driven P2P video
streaming,” in ACM SIGCOMM, Barcelona, Spain, 2009.

[29] C. Y. Chang, C. F. Chou, and M. H. Chen, “Striking the balance be-
tween content diversity and content importance in swarm-based P2P
streaming system,” in Proc. IEEE 13th Int. Conf. High Performance
Comput. Commun., Banff, Canada, Sep. 2011, pp. 653–660.

[30] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “LayerP2P:
Using layered video chunks in P2P live streaming,” IEEE Trans. Mul-
timedia, vol. 11, no. 7, pp. 1340–1352, Jul. 2009.

[31] Z. Liu, Y. Shen, S. S. Panwar, K.W.Ross, andY.Wang, “Using layered
video to provide incentives in P2P live streaming,” in Proc. SIGCOMM
P2P-TV, Kyoto, Japan, Aug. 2007, pp. 311–316.

[32] D. C. Tomozei and L. Massoulié, “Flow control for cost-efficient
peer-to-peer streaming,” in Proc. IEEE INFOCOM, San Diego, Mar.
2010, pp. 1–9.

[33] D. Qiu and R. Srikant, “Modeling and performance analysis of bittor-
rent-like peer-to-peer networks,” in Proc. ACM SIGCOMM, Portland,
OR, Aug. 2004, pp. 367–378.

[34] B. Fan, D. Andersen, M. Kaminsky, and K. Papagiannaki, “Balancing
throughput, robustness, and in-order delivery in P2P VoD,” presented
at the ACM CoNEXT, Philadelphia, PA, Jun. 2010.

[35] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava, “On peer-to-peer
media streaming,” in Proc. IEEE ICDCS, Vienna, Austria, Jul. 2002,
pp. 363–371.

[36] A. P. C. da Silva, E. Leonardi, M. Mellia, and M. Meo, “A bandwidth-
aware scheduling strategy for P2P-TV systems,” in Proc. 8th Int. Conf.
Peer-to-Peer Comput. , Tarragona, Spain, Sep. 2008, pp. 279–288.

[37] K. L. Hua, G. M. Chiu, H. K. Pao, and Y. C. Cheng, “An efficient
scheduling algorithm for scalable video streaming over P2P networks,”
J. Comput. Netw., vol. 57, no. 14, pp. 2856–2868, Oct. 2013.

[38] X. Xiao, Y. C. Shi, Q. Zhang, J. H. Shen, and Y. Gao, “Toward system-
atical data scheduling for layered streaming in peer-to-peer networks:
Can we go farther?,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no.
5, pp. 685–697, May 2010.

[39] H. Hu, Y. Guo, and Y. Liu, “Peer-to-peer streaming of layered video:
Efficiency, fairness and incentive,” IEEE Trans. Circuits Syst. Video
Technol., vol. 21, no. 8, pp. 1013–1026, Aug. 2011.

[40] D. Xu, C. Rosenberg, S. Kulkarni, and H.-K. Chai, “Analysis of a
CDN-P2P hybrid architecture for cost-effective streaming distribu-
tion,” Multimedia Syst. J., vol. 11, no. 4, pp. 585–599, 2006.

[41] C. Huang, A. Wang, J. Li, and K. W. Ross, “Understanding hybrid
CDN-P2P: Why limelight needs its own red swoosh,” in Proc. ACM
NOSSDAV, Braunschweig, Germany, May 2008, pp. 75–80.

[42] H. Yin, X. N. Liu, T. Y. Zhan, V. Sekar, F. Qiu, C. Lin, H. Z. , and
B. Li, “Design and deployment of a hybrid CDN-P2P system for live
video streaming: Experiences with livesky,” in Proc. ACM MM, Bei-
jing, China, Oct. 2009, pp. 25–34.

[43] Y. Zhou, D. M. Chiu, and J. C. S. Lui, “A simple nodel for chunk
scheduling strategies in P2P streaming,” IEEE/ACM Trans. Network,
vol. 19, no. 1, pp. 42–54, Feb. 2011.

[44] J. Chakareski and P. Frossard, “Utility-based packet scheduling in P2P
mesh-based multicast,” in Proc. SPIE Vis. Commun. Image Process.,
San Jose, CA, Jan. 2009, p. 72571S1.

Chun-Yuan Chang (M’06) is currently working
toward the Ph.D. degree at the Department of
Graduate Institute of Networking and Multimedia,
National Taiwan University, Taipei City, Taiwan.
His current research interests are video coding and

P2P content distribution.



CHANG et al.: CONTENT-PRIORITY-AWARE CHUNK SCHEDULING OVER SWARM-BASED P2P LIVE STREAMING SYSTEM 69

Cheng-Fu Chou received the M.S. and Ph.D. de-
grees from the University of Maryland, College Park,
MD, USA, in 1999 and 2002, respectively.
After his graduation, he joined the Computer

Science and Information Engineering Department
at the National Taiwan University. He has been a
visiting scholar in the Computer Science Department
at the University of Southern California. His current
research interests are in distributed multimedia
systems, peer-to-peer computing, wireless networks,
and their performance evaluation.

Kwang-Cheng Chen (M’89–SM’94–F’07) received
the B.S. degree from the National Taiwan University,
Taipei, Taiwan, in 1983, and the M.S. and Ph.D. de-
grees from the University of Maryland, College Park,
MD, USA, in 1987 and 1989, respectively, all in elec-
trical engineering.
From 1987 to 1998, he worked with SSE,

COMSAT, IBM Thomas J. Watson Research Center,
and the National Tsing Hua University, in mobile
communications and networks. Since 1998, he
has been with National Taiwan University, Taipei,

Taiwan, and is the Distinguished Professor and Associate Dean for academic
affairs in the College of Electrical Engineering and Computer Science, National
Taiwan University. He is a SKKU Fellow Professor, Korea (2013–2014). His
research interests include wireless communications and network science. He
has authored and co-authored around 300 technical papers and more than 20
granted U.S. patents.
Dr. Chen has been actively involved in the organization of various IEEE con-

ferences as General/TPC Chair/co-Chair. He has served editorship with a few
IEEE journals and many international journals and served various positions in
IEEE. He also actively participates and has contributed essential technology to
various IEEE 802, Bluetooth, and 3 GPP wireless standards. He has received
a number of awards including 2011 IEEE COMSOC WTC Recognition Award
and co-authored a few award-winning papers published in the IEEE ComSoc
journals and conferences.


